
WORKER UPINF016.5 • ' 09/25/79 15156 PRT003

* !
* • * + * * * * * * * * * * * * * * * * * * * • .
**

* *
.

_* * U iL__JlQ_CL__R.RRR IS \L EEEEE SRRR
* * W W 0 0 R R K K E R R
* * W W W 0 0 R R K K E R R

j * * y_ u u 0 n RRR.R K.K E E £ £ RJ1RR__
* * W W W O O R R K K E R R
* * WW WW C 0 R R K K E R R

** W W OOP R R K (< E_E_E_££ B B_
* *
* *
* *
* * U U PPPP I I I N N FFFFF 000 1 666 55555
* * U U P P I N N N F 0 0 11 6 5
* * U U P P I N N N F 0 0 1 6 5555
** U U PPPP I N N N FFFF 0 0 1 6666 5
* * U U P I N N N F 0 0 1 6 6 5
* * U U P I N N N F 0 0 1 6 6 , . 5 5
** UUU P III N N F 000 111 666 •• 555
**
**
**
********** **-****
*** *********** ****

UFD UPDATE I N F O R M A T I O N F I L E K L V - l f a . b

*

* UFC UPDATE INFORMATION FILE REV. 16.5
*
*
* THIS UFO CONTAINS ALL SOFTWARE UPDATES GENERATED AFTER
* THE LAST UPDATE DISK RELEASE WHICH WAS 16.4.
* INFORMATION ABOUT ALL PREVIOUS UPDATE RELEASES SINCE
* THE INITIAL RELEASE IS PRESENTED IN THIS FILE ALSO.
* THE INITIAL REV. 16 RELEASE WAS 16.3.
* TO UPDATE THOSE FILES
* REQUIRED ON YOUR MASTER DISK? FUTIL COPY THE PROGRAM
* REQUIRED TO THE UFD SPECIFIED IN THE TABLE UNDER THE -TO- COLUMN
_* AND USE UPXXX AS THE PROGRAM TO COPY AND THE NAME UNDER .___
* THE NAME COLUMN AS THE NAME THE PROGRAM IS TO BE COPIED AS.
*
* NOTE: ALL -TO- UFD»S MAY NOT EXIST ON YOUR
* DISK IF YOU HAVE A 6 OR 12 MEG.BYTE DISK.
*
*
* EXAMPLE: UPDATE NO. NAME TO

* UPOOl CPUT1 T&M
*
* FUTIL
_* >FROM 'THIS UFD* NOT NEEDED IF THIS IS HOME UFD
* >TO T&M
* >COPY UPOOl CPUT1
* >QU
*
*
* NOTE: > EQUALS SUB-UFD IN -TO- COLUMN
* NA EQUALS NOT ASSIGNED
*

* USED ON (UFDNAME) DEFINITION

*
*
*
*
*
*
•
*
*
*

8000
8020
8060
8100
8120
8140
8150
8160
8300
8410

P8000
P8020
P8060
P8100
P8120
P8140
P8150
P8160
P8300
P8410

COBOL
RJ2780
RJCDC
PRIMOS 4/5
HASP300&400
DBMS (DATABASE)
RPG
FORMS
SPSS
DPTX-DSC

* 8420 P8420 DPTX-TSF
* 8430 P8430 DPTX-TCF
* 8440 P8440 PRINET
* 8450 P8450 X.25
* 8520 P8520 BASICV

SET TABS 12 21 46 58 66 75
UPDATE NO. NAME TO SOURCE NO. SCN NO. DATE USED ON

UFC UPDATE INFORMATION FILE REV. 16.5

REV. 16.4 APRIL 2Q»1979
*
UP001
UP002

DPTX-D
CPTX-T

SC <M
SF <M

164B1
164B1

>MFD
>MFD

(D
(D
IRECTORY)
IRECTORY)

042079
042079

8410
8420

UP003 DPTX-TCF <M
UP004-LP014 SUPERCEEDE
U-P015 EDB <M

164B1>MFD (DIRECTORY)
D
164A1>MFD (DIRECTORY)

042079

042079

8430

8100
UP016 EDB <M
UP017-UP018 SUPERCEEDE
UP019 MAGSP. <M

164A1>CMDNC0 (RUN)
D
164A1>MFD (DIRECTORY)

042079

042079

8100

8100
UP020
UP021
UP022

MAGRST
MAGSAV
MAGSAV

<M
<M
<M

164A1
164A1
164B1

>CMDNC0
>CMDNC0
>CMDNC0

(RUN)
(RUN)
(RUN)

042079
042079
042079

8100
810 0
8100

UP023
UP041
UP042

•UP040 SUPERCEEDED
EASIC <M164A1>MFD (DIRECTORY)
BASIC <M164A1>CMDNC0 (RUN)

040278
042079

8100
8100

UP043 DBASIC <M164A1>MFD (DIRECTORY)
UP044 DBASIC <M164A1>CMDNC0 (RUN)
UP044-LP045 SUPERCEEDED

042079
042079

8100
8100

UP047
UP048
UP049

PRINET
X.25
FIXRAT

<M
<M
<M

164B1
164B1
164A1

>MFD (D
>MFD (D
>MFD (D

IRECTORY)
IRECTORY)
IRECTORY)

UP050 FIXRAT <M
UP051 FIXRAT <M
UP052-LP063 SUPERCEEDE
UP064
UPC65
UP066

ERRD.F
ERRD.P
SETSIZ

<M
<M
<M

164A1
164B1
D
164A1
164A1
164A1

>CMDNCO
>CMDNC0

(RUN)
(RUN)

>SYSCOM
>SYSCOM
>LIB7 (

(SOURCE)
(SOURCE)

SOURCE)
UP067 SUPERCEEDED
UP068 CPUT4 TMS40
UP069 C CPUT4 TMS40

042079
042079
042079
042079
042079

042079
042079
042079

O(SOURCE)
0 (COMMAND F I L E)

SRC1334 .000 0217 042079
042079

8440
8450
8100
8100
8100

8100
8100
8100

8100
8100

UP070 CPUT4 T&M (RUN)
UP071-UP072 SUPERCEEDED
UP073 PRMNT1 TMS400 (SOURCE SRC1326.003 0246

042079

051079

8100

8100
UP074
UP075
UP076
UP077
UP078-
UP080

PRMNT1
VTTYT1
VTTYT1
C_VTTY

•UP079 SUPER
P4WCST

UP081
UP082
UP083

P4WCST
STLBT2
STLBT2

T&M (
TMS40
T&M (

Tl T&M ("
CEEDED

TMS40
T&M (
TMS40
T&M (

RUN)
0 (SOURCE
RUN)

SRC1328.000 0208
051079
042079
042079

COMMAND F

0 (SOURCE

ILE)

) SCR1311.002 0216

042079

042079
RUN)
0 (SOURCE
RUN)

SRC1313.004 0215
042079
042079
042079

UP084-
UP086
UP087

•UP085 SUPER
CRTT1
CRTT1

CEEDED
T&MSR
T&M (

1 (SOURCE
RUN)

SRC1324.002 0196 042079
042079

UP088'
UP090
UP091

•LP089 SUPER
DISCT1
DISUFD

CEEDED
T&MSR
T&M (

1 (SOURCE
DIRECTORY

S R C 0 7 8 7 . 0 1 1 0218 042079
042079

UP092-UP096 SUPERCEEDED

REV. 16.5 JULY 24? 1979

8100
8100
8100
8100

8100
8100
8100
8100

8100
8100

8100
8100

UPC U P U A I L I N F O R M A T I O N P I L L K c V . 1 6 . t >

*

UP097
UP098
UP099
UP100
UP101
UP102
UP103
UP104
UP104A
UP105
UP106
UP107
UP108
UP109
UP110
UP111
UP112
UP113
UP114
UP115
UP116
UP117
UP118
UP119
UP120
UP121
UP122
UP123
UP124
UP125
UP126
UP127
UP128
UP129
UP130
UP131
UP132
UP133
UP134
UP135
UP136
UP137
UP138
UP139
UP140
UP141
UP142
UP143
UP144
UP145
UP146
UP146A
UP146B

MIDAS
KIDALB
KIDAFM
VKDALB
NVKDALB
K4000
K2014A
K2014B
IMIDAS
CREATK
KBUILD
KIDDEL
REMAKE
MCLUP
C MDLC1
MDLCT1
MDLCT1
C MDLC2
MDLCT2
MDLCT2
C_MDLC3
MDLCT3
MDLCT3
C MDLC4
MDLCT4
MDLCT4
C MDLC5
MDLCT5
MDLCT5
C_MDLC6
MDLCT6
MDLCT6
C MDLC7
MDLCT7
MDLCT7
C MDLC8
MDLCT8
MDLCT8
C MDLC9
MDLCT9
MDLCT9
URCT1
URCT1
RTCT2
RTCT2
HSSCT2
HSSCT2
COBOL
C4000
C2014A
C2C14B
PXT1
PXT1

<M165A1>MFD (DIRECTORY
<M165A1>LIB (BINARY)
<M165A1>LIB (BINARY)
<M165A1>LIB (BINARY)
<M164A1>LIB (BINARY)
<M165A1>SYSTEM (BINARY)
<M1£5A1>SYSTEM (BINARY)
<M165A1>SYSTEM (BINARY)
<M165A1>SYSTEM (BINARY)
<M165A1>CMDNC0(RUN)
<M165A1>CMDNC0 (RUN)
<M165A1>CMDNC0 (RUN)
<M165A1>CMDNC0 (RUN)
<M165A1>CMDNC0 (RUN)
TMS400 (COMMAND)
TMS400 (SOURCE)
T&M (RUN)
TMS400 (COMMAND)
TMS400 (SOURCE)
T&M (RUN)
TMS400 (COMMAND)
TMS400 (SOURCE)
T&M (RUN)
TMS400 (COMMAND)
TMS4C0 (SOURCE)
T&M (RUN)
TMS400 (COMMAND)
TMS400 (SOURCE)
T&M (RUN)
TMS400 (COMMAND)
TMS400 (SOURCE)
T&M (RUN)
TMS400 (COMMAND)
TMS400 (SOURCE)
T&M (RUN)
TMS400 (COMMAND)
TMS400 (SOURCE)
T&M (RUN)
TMS400 (COMMAND)
TMS400 (SOURCE)
T&M (RUN)
T&MSR1 (SOURCE)
T&M (RUN)
T&MSRC (SOURCE)
T&M (RUN)
T&MSRC (SOURCE)
T&M (RUN)
<M165B1>MFD (DIRECTORY)
<M165A1>SYSTEM
<M165A1>SYSTEM
<M165A1>SYSTEM
<M166A1>TMS400 (SOURCE)
<M166A1>T&M (RUN)

SRC1316,

SRC1317.

SRC1318.

SRC1319,

SRC1320«

SRC1321-

SRC1322.

SRC1323.

SRC1327.

SRC0732.

SRC0784.

SRC0796.

SRC1304.

,003

,002

,002

• 002

,003

,004

,002

,004

,001

,006

008

,007

007

254
254
254
254
254
254
254
254
254
254
254
254
254
254
311
311
311
259
259
259
260
260
260
261
261
261
262
262
262
314
314
314
264
264
264
315
315
315
266
266
266
248
248
247
247
252
252

255
255

072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
072479
0 72479
072479
072479
072479
0 724 79
0 72479
0 72479
072479
072479
072479
072479
0724 79
072479
072479
072479
072479

8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8100
8000
8000
8000
8000
8000
8100
8100

• . . P - j : . c v . - . J J. ;

•.' •'/ J. <".
'-; J 1 v

o t.,; t
t\ _, ^ i\

0 ;: 1.8

0C-. I s
o.: 18
J •"' i F

D v i c

O v . I 6

-:v•••;;*: a
^T«-\.T'fj

PTA-^V J
r V i K l V : :
r T - ^ V : !
r T i ^ V j
v W 3 Y 0
g.Tt»\TO
•'v*>:v .
c V ! '•: \ i:

se's •:.••:• c.^stiD.-j?^ (3J>:ULV:> i ; 3 , ^ u T < t^ - i j r o
cci i .(/?J:S-) M3.T.<IA-J .*J>>
?3£ Ci.::.i2y2 (v ><cT3 J-ft: 3> a-.i'A£Ki;-<XA:-^ir-;>--

303 f GC.\ 0£I3£3 <33:HUG3> • aO*>3MT<i;433J>->

3-G£ : . . (.«US) MS T < X' A ? i-C.i: >
?•:.'. I O O o f > S £ I G * E (' S v f l U o O O O A 2 M K l A r r i l . O
?3: (/.J a.) ->!T<: IA-':>i;iO
01c .= 0U.'c!0£.X3F2 (33«U/3) DO ̂ MTCIA:^. f.:"'>

CI 3

rT DJ '•'•
<• i . : j.?-;:-*
••.- V T J -

" ••• ; ^;-
••','_; & l -\[
.- •"•. i- f -" 1

>TI.JC':>
-TU~3

(/US) <«AT<IAcc-Ii'5>'-

3J3AT 3TACHU ~=<3

33/A-H3 PC- .'::;

I, : .. / •:: 3

» ^ o a i „V:33 *C3 T2yc.c.-tq 'rtr=/! & S I . - S H T o s a - x T " :)

. > . w . " , ' u33 £ 0 3 T3uC0. : : c i 1-.-2/1 A : i 2.I--T ("r: T - X T q C .)

. S u c i c\«Z? ao~ T."U :.•':--- i-;33 A 3.1 31 HT (I D T - x r ^ ')

. .C-/Ifl-T-E Ti3--G3 "0I/1I2U 3TI/3W" 3 I ; 3 0 A * 2 3 i / l ICA3J XI=? OT (l O I L ^ ? -)

e 0 3?i C •/• 5 I Y J 3 U 0 1 V :i • i'- 3 3 3 .-< :; 0 I - • .-••

(• ^I.-iT^e.Uv: i V 0 3) -a is- 3 U. -.'•: i,11 QMU03 5IK-. / ; C ir • I ^ A 23X1 '^ r '- .r i ! < 3 I J c c - >

• « r J T : 3 C : ' ^ V 0 . - ; : G 3 V : . : X ^ ^ C T ficjj'r- t ^ i ' ^ q A j F ^ v : G 3 ^ U A 3 H S I H W

• v e o q y 33 : : <31 J r ; r- .•<)

' • T 0 0=i«j 3 3 - : (CJ-'-.^-AV)

- 1 0 3 3 - MTivi £ H 3 J a O S - -DL-'" IV JO V:' I 3 i i i ; i S i I ^ i ^ SflAT (I) M ^ C / l - r)
" J C , " ' " Y j . " , " , J i . o l T ' - u =' ? C f A:-'?-'6"5 ' / e i T f i i u A v ;

3 3 ^ r ! T A J / y.C T : 5 3 3 3 3 A A T GT 3»/«.'••?•• 01 " ^ 3 , " 23-2UAO C3)
- « : 0 A S A/VTX3 t C 2 '.- I T I *K l-r A - T S.iHTA/?

/ ' I c / i : :Hqy r 1 - SJOU'-Ah'? 3HT « C ^ " 3 3 ' " » J C A 3VA2 F30;^GJ C:A'll>
. i?T*/*3TV0p 3 0 3 J U A T . 3hT

« Y J T - 3 3 - / ? Q . J J B3SA£-33M J=&«r!3 H.C? 83.v'At-'i 3 J I 3 > 3 A T £ (^)

. CIO'5'J 33 3 (V - i C / j r o

• 03c::>i'D OT U ^ V . I 2A 33TCUD i-i5 3MA:.-; 33HT wOJJ-^ (X) (: 3 3 3)

. v ^ a 'Ai 3go;-; U U A I 3 C 3>.UAi r r /? r .3^ CSJ
. • ' • : •',• • . 30'Cf-V " f c J=3iyj i '"" >'fl M3H'-: . .9#S C S J ~ (' -)

' V l ' ' : :C r 'C;s (D 3 c A r) UOOA HAHT 3 2 3 J " "3 JU'Ci -0M T I J ^ 3 A ^ t i A ' i ' ' (-M
» - A C J 3~T 9 / I ' i sUG ?;2 3.fiaOA >«jAT2 Y A J - 3 I 3 Cî A H T S L ^ J

C i i i , ; t i i ; - ^ - : ' ^ 3 3 ; T T h i I--. ^iOCJci i'lCMMCD * * > J 3 5 3 i.'. I L'-A 3JQWAH (3v >
""-." ' 25*AT cV; i

« 3 X 0 " U 3 3 J (4 i3 ' T AH3)

' l - l l :'

•A j 9 \ '.

i-iizm

UrU UHUATL INFORMATION FILE RLV. 16.5

UP015 (EDBX1) FLAG SOURCE INPUT FILE AS A "BAD OBJECT FILE".
(2) GENET (OBSOLETE BUT STILL SUPPORTED) NOW WORKS

UP016 (ECB) SEE UP015.
*
UP017 (LOADH1) TAR 25536 DEFERRED COHMOM ON A LIBRARY "COMMON" BLOCK

BUG FIXED.
(2) ALLOWS LARGER COMMON REDEFINITION WHEN DEFERRED.

UP018 (LOAD) SEE UP017.
*

UP019 (MAGSR)
*

UP020 (MAGRSTXl) HANDLES THE CONDITION THAT "A NON DATA RECORD FOLLOWS
A UFD TREE NAME RECORD".

(2) PRINT ERROR MESSAGE AND PAUSE WHEN A "DISC FULL" CONDITI
OCCURS. (TAR 11969)

(3) PRINT PATHNAME OF THE FILE AT THE TIME AN "UNEXPECTED EO
CONDITION OCCURS.

(4) SET READ/WRITE LOCK CORRECTLY. (TAR 10554)
(5) REMOVE "-LONG" FROM USAGE LINE. (TAR 22800)

*

UP021 (MAGSAVX1) SAVE UFD WHICH HAS "READ ONLY" PERMISSION TO NON-
OWNER AND FILES WITHIN THAT UFD WHICH PERMIT READ
ACCESS TO NON-OWNER. PASSWORDS FOR THE SAVED UFD
ARE SET TO NULL.

(2) WHEN PROGRAM ASKS FOR A NEW TAPE* PROGRAM CHECKS TO SEE
IF
IS

THE NEW TAPE IS AT LOAD
THE SECOND PHYSICAL

PROGRAM WILL QUERY
TO BE REWOUND.
REWOUND. IF THE
FOR : A NEW TAPE 1

IF
USEF
HIS

ANSWER
JNI1

REEL
{ TO

POINT.
. OF
SEE

ANSWER :
IS " 'NO"

A
IF

IS

IF NOT, AND
LOGICAL TAPE*
HE WANTS THE

THE TAPE

TAPE
"YES", TAPE WILL BE

, PROGRAM WILL ASK

*

UP022 (MAGSAV) SEE UP021.
*
UP023 (FTN) TAR 23673 GENERALIZED SUBSCRIPTS CAN GENERATE

BAD CODE WHEN A VARIABLE IS SUBTRACTED
FROM A CONSTANT.

TAR 25264 "LS" AND "RS» INTRINSICS GENERATE BAD CODE FOR
NEGATIVE SHIFT COUNTS.

TAR 25561 THE COMPILER HANGS WHEN IN 64V MODE A STATEMENT
FUNCTION IS PASSED AS AN OCTAL ARGUMENT.

WHEN A "SINSERT" FILE IS NOT FOUND, THE ERROR MESSAGE WILL
NOT CONTAIN A SPURIOUS »T». THE "SHORTCALL"
STATEMENT WORKS WITH LIBRARY CONVERSION FUNCTIONS.
MINOR PROBLEMS IN PARSING ARRAY REFERENCES AND
_sTATEMENT FUNCTIONS ARE FIXED. THE COMPILER
USED TO GET THE EXCESS SUBSCRIPTS AND TOO FEW
SUBSCRIPTS ERROR MESSAGES REVERSED.

UP024 (FTN) SEE INFO ON UP023.
*

UP025 (FTNOPT) ALL THE FIXES FOR "FTN" APPLY TO "FTNOPT" AS

UFD UPDATE INFORMATION FILE REV- 16.5

WELL. OPTIMIZER PROBLEMS WHICH HAVE BEEN
FIXED ARE:

-USE OF THE DO LOOP OPTIMIZER SOMETIMES
PRODUCED LESS EFFICIENT CODE OUTSIDE
LOOPS

-TEMPORARY VARIABLES INSIDE OPTIMIZED
DO LOOPS WERE NOT ALWAYS FREED PROPERLY

-OPTIMIZED DO LOOPS OCCASIONALLY HAD
BAD CODE FOR MIXED MODE ARITHMETIC.

*

UP026
*

UP027

*

UP028
*
UP029
*

UP030
*

UP031

*

(FTNOPT) SEE INFO ON UP025.

(COBOL)TO CORRECT TAR 25666. QUALIFIED DATA NAMES NOT
OPERATING CORRECTLY.

(C400Q) SEE UP027.

(C2014A) SEE UP027.

(C2Q14B) SEE UP027.

(FLIB6V) CFSIOH-FREE FORMAT COMPLEX INPUT DID NOT
WORK FOR F$IO.

UP032
*
UP033

(VDSPKS) CTSRC$$3-"OA" DID NOT WORKFOR TSRC$$.

(DOSPKS)
SEMLIB P300 CODE REMOVED. (TAR 81470)
TSRC$$,I*>A" DID NOT WORK.

(IFTNLB)
-P300 CODE REMOVED (TAR 81470)
-"*>A" DID NOT WRK

*
UP035
*

UP036
*
UP037

(PFTNLIB) SEE UP034.

CNPFTNLIB) SEE UP034.

(FTNLIB) SEE UP034.
*

UP038
*

UP039
*

UP040

(S4000) SEE UP034.

(S2014A) SEE UP034.

(32G14S) SEE UP034.
*
UP041 (BASIC) TARS 12546 & 80852 "PRINT USING" JUXTAPOSED

ITEMS WHEN THE FIRST NUMERIC ITEMS OVERFLOWED.
TAR 13717 H.NL.» DID NOT RESET THE COLUMN COUNT
IN ENTER STATEMENT.

TAR 24728 STATEMENT NUMBER "0" WAS NOT SENSED AS AN
ERROR,

TAR 15819 "PRINT USING" ROUNDING IS NOT CONSISTENT.
MACHINE FLOATING ACCURACY IS THE PROBLEM HERE» BUT

UFL UFUATL INFORMATION FILE REV- 16 • 5

NOTE THAT THE ACTUAL COMPUTATION ACCURACY IS NOT
AFFECTED BY THIS PROBLEM* WHICH IS DUE TO THE IN
PUT CONVERSION IF ASCII DIGITS TO FLOATING NUMBERS.
A BET
THESE
TAR'S

TER ME
PROBL
80236

THOD I
EMS WI
& 8046

S USED
LL NOT
9 "HA

BY BASIC/VM AND FORTRAN* SO
SHOW UP.
LT" 'S ARE ENCOUNTERED WHEN

STRINGS ARE PASSED TO A FORTRAN PROGRAM. THE DOCU
MENTATION IS WRONG AND INDEED STRINGS ARE NOT
ALLOWED TO BE PASSED TO A FORTRAN PROGRAM.

TAR 22783 A "FOR-NEXT" UNMATCHING ERROR WAS GENERATED
WHEN IN FACT NO MISMATCH EXISTED.

UP042
*
UP043

(BASIC) SEE INFO ON UP041.

(DBASIC) SEE INFO ON UP041.
*
UP044

UP045

(DBASIC) SEE INFO ON UP041.

(PRI400)
BUG FIXES AT REV. 16.4

COMINPUT COMMAND

THE FILE UNIT SPECIFIED WAS IGNORED IF SPECIFIED AFTER
A -OPTION. E.G.t IF THE COMMAND »CO -CONTINUE 7» WAS
GIVEN, FILE UNIT 6 WAS USED. (TAR 80697)

FILUNT COLD START PARAMETER

IF A FILUNT PARAMETER WAS USED IN THE COLD START FILE*
SPURIOUS RESULTS WOULD OCCUR.

ASSIGNED AMLC LINES

OUTPUT CHARACTERS COULD BE LOST WHEN UNASSIGNING AMLC

LINES. (TAR 23415)

WTLINS

DATE-TIME MODIFIED NOT UPDATED WHEN FILE ACCESSED WITH
CALL TO WTLINS.

SHARE

IT WAS NOT POSSIBLE TO SHARE AN ENTIRE SEGMENT. I.E.*
RESTORE FILE WHOSE START ADDR = 0 AND END ADDR = 177777
OCTAL. (TAR 10555)

COMOUTPUT

UFC UPDATE INFORMATION FILE REV. 16.5

DID NOT GIVE ERROR MESSAGE IF FILE SPECIFIED WAS A
DIRECTORY. COMMAND OF FORM "COMO TREENAME -C" WOULD NOT
WORK.

-DUE TO A CONFLICT WITH PREVIOUSLY DEFINED HARDWARE
DEVICE ADDRESSES, THE DEVICE ADDRESS OF THE PRIMENET
NODE CONTROLLER (PNC) HAS BEEN CHANGED FROM '61 TO '07

*

UP046 (PRIRUN) SEE UP045.
FILE.

*
UP047 (PRINET) FAM FOR REV. 16.4, THE FOLLOWING BUGS HAVE BEEN

FIXED:
-ACCESSING SEGMENT DIRECTORIES VIA PATHNAME NOW WORKS,

(I.E., SEG REMOTE UFD>SUBUFD>#PROG)
-DUPLICATE RECEIVED MESSAGE BUG IS PROBABLY FIXED.
-LONG WRITE LINES NOW WORK WITH > 255 TRAILING SPACES.
-GROSS FLAG IS NOW RESET IN FAMCYL, (COULD GET LOCKED
SET IN 16.2).
-FAM NOW ACCEPTS CDS CODES TO WORK WITH PRIMENET CIRCUIT
CLEARING CAUSES.
-THE INTERNAL VERSION NUMBER AND RECEIVE BLOCK SIZE PASSING
HAS BEEN UPDATED TO CONFORM WITH 17.0'S EXPECTATIONS.

UP048 """ (X.25) NETCFG HAS BEEN FIXED" FOR HETEROGENEOUS COMBINATIONS
OF PRIMENET AND X.25 SOFTWARE IN THE SAME NETWORK. IT
IS NO LONGER A REQUIREMENT THAT IF ANY NODE HAS THE X.25
SOFTWARE, THEY ALL MUST HAVE IT. TO SUPPORT THIS FEATURE
THERE HAVE BEEN SOME INTERNAL CHANGES TO THE FORMAT OF
THE CONFIGURATION FILE 'NETCON*.

*
UP049
*
UP050
*
UP051
*
UP052

(FIXRAT) UFD COMPRESSION FAILED TO WORK CORRECTLY.

(FIXRAT) SEE UP049.

(FIXRAT) SEE UPQ49.

(MICAS)
MICAS REV. 16.4

ABSTRACT

NEW AT REV 16.4, MIDAS UTILITY *MPACKTSORTS DATA RECORDS BY PRIMARY KEY
AND RECOVERS SPACE OCCUPIED BY DATA RECORDS WHICH HAVE BEEN MARKED FOR
DELETION.
FOR REV 16 MIDAS FILES, *MPACK SORTS DATA RECORDS BY PRIMARY KEY AND
RECOVERS SPACE OCCUPIED BY DATA RECORDS WHICH HAVE BEEN MARKED FOR
DELETION. INDEXES ARE ALSO RESTRUCTURED SO THAT THEY OCCUPY AS LITTLE
DISK SPACE AS POSSIBLE. »MPACK IS USEFUL FOR APPLICATIONS IN WHICH 1)
DISK SPACE IS VERY LIMITED, AND/OR 2) RECORDS ARE OFTEN INSERTED AND
DELETED FROM A MIDAS FILE.
*MPACK IS BUILT BY COMMAND FILE C MPACK IN UFD MIDAS>SOURCE. NOTE THAT
*MPACK IS BUILT IN UFD MIDAS>SOURCE, NOT CMDNCO, AND EXECUTES IN R-MODE
ONLY. *MPACK HAS BASICALLY TWO OPTIONS. A MIDAS FILE MAY SIMPLY BE
RESTRUCTURED. IN THIS CASE THE EXISTING FILE IS OVERWRITTEN WITH THE

UhU UFUAlt INhOKMATlON FILE REV. lb.h

RESTRUCTURED
BE WRITTEN TO
1 ILLUSTRATES

DATA
A SE
HOW

• THE SECOND
COND FILE* THUS
TO USE *MPACK.

OPTION CAUSES THE RESTRUCTURED
PRESERVING THE ORIGINAL
COMMENTS ARE ENCLOSED IN

FILE.
DATA TO
FIGURE

PARENTHESES
AND USER INPUT IS UNDERLINED

OK* R *MPACK
GO
CMPACK REV 16.43
ENTER MIDAS FILE NAME: ACCT>MASTER (PATH NAME OF FILE TO BE >

(RESTRUCTURED.)
J)K TO OVERWRITE THE FILE? NO (SEE NOTE 1.)

ENTER NEW MIDAS FILE NAME:""FlLEl (PATH NAME OF FILE TO CONTAIN THE)

(RESTRUCTURED INFORMATION.)
FILE ALREADY EXISTS. OK TO OVERWRITE? NO (SEE NOTE 2.)

ENTER NEW MIDAS FILE NAME: FILE2 (SEE NOTE 3.)

BEGIN PROCESSING INDEX D AT 11:22:00
ENTRIES INDEXED: 250

BEGIN PROCESSING INDEX 1 AT 11:26:27
ENTRIES INDEXED: 92

RESTRUCTURE COMPLETED AT 11:28:26

FIGURE 1

NOTES

1. THE NO RESPONSE INDICATES THAT THE RESTRUCTURED DATA SHOULD
BE WRITTEN TO ANOTHER FILE. THE FILE* MASTER* WAS NOT MODIFIED.

2. THE NO RESPONSE INDICATES THAT THE MIDAS FILE* FILE1* SHOULD NOT
EE USED. *MPACK ALSO VERIFIES THAT THE FILE IS A VALID MIDAS
FILE. IF NOT VALID* *MPACK NOTIFIES THE USER AND REQUESTS A
NEW PATH NAME.

3. SINCE FILE2 DID NOT EXIST* *MPACK CREATED IT.

*

UP053 (KICALB) SEE UP052.
*
UP054 (KIDAFM) SEE UP052.
*

UP055 (VKDALB) SEE UP052.
*

UP056 (NVKDALB) SEE UP052.
*

UFD UPDATE INFORMATION FILE REV, 16.5

UP057
*
UPQ58
*
UP059
*

(K4000) SEE UP052.

(K2014A) SEE UP052.

(K2014B) SEE UP052.

UP060
*

UP061
*

UP062
*

UP063
*
UP064
*
UP065
*

(CREATK)

(KBUILD)

(KIDDED

(REMAKE)

(ERRD.F)

(ERRD.P)

SEE UP052.

SEE UP052.

SEE UP052.

SEE UP052.

ERROR CODE FOR DPTX.

SEE INFO ON UP0S4.

UP066 (SETSIZ) SETSIZ SOMETIMES WENT INTO AN IMFINITE LOOP UNDER
PRIMOS 2

*
"UP0"67 (DBMS) THE FOLLOWING IS A LIST OF BUGS FIXED IN REV. 16.3.

EXCEPT WHERE NOTED, THE BUGS WERE FIXED BASED ON INTERNAL
ERRORS OR ERRORS THAT WERE REPORTED BY CMSI OVER THE PHONE
AND THERE ARE NO TAR NUMBERS.
1) THE FOLLOWING PATCHES HAVE BEEN MADE TO DMLCP.
A. THE SIZE OF THE INTERNAL RECORD AREA HAS BEEN

EXPANDED FROM 3KB TO 32 KB TAR 24722.
B. THE OPEN COMMAND WILL NOW ONLY OPEN AREAS

SPECIFIED ON THE OPEN COMMAND RATHER THAN ALL
AREAS.

C. THE CLEAR ERROR COMMAND HAS BEEN FIXED SO
THE SYSTEM WILL NOT HANG.

D. THE 710F ERROR IN THE ROUTINE SETLST HAS BEEN
FIXED.

E. THE ROUTINE PUTLST HAS BEEN PATCHED SO THAT
DUPLICATES WILL BE INSERTED IN THE PROPER
ORDER.

F. AFTER IMAGE LOGGING HAS BEEN PATCHED TO
ACCOMIDATE BUCKETS LARGER THAN ONE (1) PAGE.
R4VAL HAS BEEN PATCHED TO ACCOMIDATE LONG
RETRIEVAL TRANSACTIONS.

2) CLUP HAS BEEN PATCHED SO THAT CERTAIN ERRORS WILL
BE DISPLAYED ON THEIR TERMINAL WHEN THEY OCCUR.

3) DBACP HAS BEEN FIXED SO THAT IT MAY INITIALIZE A

*
UP068

*

UP069
*
UP070
*

FILE LARGER THAN 32,000 BLOCK PROPERLY.

(CPLT4) TO REDUCE THE NUMBER OF TEST PROGRAMS. P400T2 & P500T1
ARE COMBINED IN AND ARE REPLACED BY THIS NEW TEST.

(C CPUT4) SEE UP068

(CPUT4) SEE UP068.

UFD UPDAIE INFORMATION FILE RcV. 16-5

UP071 (RTCT2) TO ENABLE THE TEST TO RUN ON A VCP AS WELL AS A SOC.
*

UP072 (RTCT2) SEE UP071.
*

UP073 (PRMNT1) ADDED TESTS IN ORDER TO TEST PARTS OF THE HARDWARE
THAT WEREN»T PREVIOUSLY TESTED. TO HAVE COMPATIBILITY
BETWEEN THE WIRE WRAP AND ETCH
RUN ON THE SAME PROGRAM.
DEVICE ADDRESS OF PRIMENET NODE
FROM «61 OT »07.
A BUG WAS FOUND WHEN TRYING TO
WITH THE DEVICE ADDRESS PRIOR

VERSIONS SO THAT THEY CAN

CONTROLLER IS BEING CHANGED

LOAD THE A REGISTER
TO RUNNING THE PROGRAM.

(PRMNT1) SEE UP073.

(VTTYTl) THIS DIAGNOSTIC CHECKS OUT THE SERIAL INTERFACE CAPA
BILITIES OF THE VCP V.I.A. PFO. THIS TEST OPERATED
SIMILARLY TO TTYT2.

*

UP076 (VTTYTl) SEE UP075.
*
UP077 (URCT1) SUPPORT OF VRC / DECISION DATA CARD PROCESSOR.
*

UP07B (URCT1) SEE UP077.
*

UP079 (P4WCSJ) TEST FAILED IF THERE WERE LESS THAN 64K OF MEMORY.
*
UP080 (P4WCST) SEE UP079.
*
UP081 (STLBT2) TO ACCOMMODATE THE P 7 5 0 .

UP082 (STLBT2) SEE U P 0 8 1 .
*•

UP083 (PXT1) TO FIX STRING PROBLEM.
*

UP084 (PXT1) SEE UP083.
*

UP085 (CRTT1) (1) TO ADD A ROUTINE TO CHECK THE ABILITY FO THE
DEVICE TO TRANSMIT ON REQUEST OF THE HOST CPU AND
CHECK THE INTEGRITY OF THE TERMINALS OWN MEMORY.
(2) TO CONDENSE THE WHOLD TEST INTO A SMALLER
PACKAGE WHILE IMPROVING THE EFFECTIVENESS FO THE
WHOLE TEST.
(3) TO REMOVE POSSIBLE 3UG WHERE AMLC IS SHUTDOWN
BEFORE IT HAS TIME TO CLEAR DEDICATED PELL.

*

UP086 (CRTT1) SEE UP085.
*
UP087 (AMLCT5) TO INCORPORATE TIMING CHANGES CAUSED BY THE VCP.

UP088 (AMLCT5) SEE UP087.
*

UP089 (DISCT1) TO INCORPORATE TIMING CHANGES CAUSED BY THE VCP.

u r u u r u M i c j . ivru «n« i J. uiM r i m i\cv • iO»D

UP092-UP096 < SP00L) BETTER "QUEUE FULL" ERROR MESSAGE* (TAR 22-414):
(2) HASP CONTROL ON SERIAL PRINTER- (TAR 23467)

MIDAS REV. 16.5
ABSTRACT

CONCURRENT PROCESS HANDLING AND THE DETECTION AND CORRECTION OF
CONCURRENCY ERRORS ARE THE TWO MAJOR AREAS OF MODIFICATION IN MIDAS AT
REV 16.5. DESIGNED TO PROVIDE A SUBSTANTIAL PERFORMANCE IMPROVEMENT*
THE NEW CONCURRENT PROCESS HANDLING METHOD WILL REQUIRE MODIFICATION OF
FORTRAN AND PMA MIDAS APPLICATION PROGRAMS. THE NEW METHOD IS
AVAILAELE TO COBOL USERS AT THIS RELEASE* TO BASIC USERS AT REV 16.6,
AND TO RPG II USERS AT REV 17.1. USERS MAY EASILY DISABLE THE NEW
METHOD AND* AS A RESULT, EMPLOY THE CONCURRENT PROCESS HANDLING METHOD
AVAILA3LE IN PREVIOUS RELEASES. NOTE THAT USERS WITH APPLICATIONS
WHICH ACCESS MIDAS FILES OVER PRIMENET MUST DISABLE THE NEW CONCURRENT
PROCESS HANDLING METHOD.

THE SECOND CHANGE* INDEPENDENT OF THE FIRST* ALLOWS MIDAS IN MOST CASES
TO DETECT AND CORRECT CONCURRENCY ERRORS.

SECTION 2 OF THE PE-T DISCUSSES THE NEW CONCURRENT PROCESS HANDLING
METHOD AND ITS IMPACT ON USER APPLICATIONS AND OPERATIONS. SECTION 3
DESCRIBES HOW MIDAS DETECTS AND CORRECTS CONCURRENCY ERRORS.
INSTALLATION METHODS AND CONSIDERATIONS ARE DISCUSSED IN SECTION 4.

IABLE_OF_CONI£NJ_S

1 INTRODUCTION.. • 3

2 HANDLING OF CONCURRENT MIDAS PROCESSES
2.1 OVERVIEW
2.2 IMPLEMENTATION METHOD...
2.3 APPLICATION IMPLICATIONS

2.3.1 USER OPTIONS......
2.3.2 APPLICATION PROGRAM MODIFICATIONS-

2.3.2.1 NTFYMS
2.3.2.2 OPENM$.... •

.7
• 8
10

2.3.2.3 CLOSM$.......
2.3.3 EXAMPLES • •

2.2.3.1 USE OF NTFYM$

11
12
12

2.3.3.2 USE OF OPENMS AND CLOSM$
2.3.4 ADMINISTRATION CHANGES

2.3.4.1 OVERVIEW -

13
14
14

2.3.4.2 MIDAS INITIALIZATION — IMIDAS
2.2.4.3 MIDAS CLEANUP UTILITY — MCLUP

15
16

RECOVERY FROM CONCURRENCY ERRORS.... •
3.1 OVERVIEW •
3.2 IMPLEMENTATION OF CONCURRENCY ERROR DETECTION AND RECOVERY

17
17

3.2.1 COMMUNICATION ARRAY FORMAT
3.3 LIMITATIONS*. ».

17
.18

4 INSTALLATION OF MIDAS...
4.1 COMMAND FILES
4.2 MODIFYING THE SHARED LOCK AND SEMAPHORE VALUES

.19
19
19

4.3 DISABLING THE NEW CONCURRENT PROCESS HANDLING METHOD
4.4 NETWORK USERS •»
4.5 MICAS FILE READ/WRITE LOCKS •

19
20
20

4.6 RELOADING APPLICATION PROGRAMS 20

1 INTRODUCTION

MIDAS AT REV 16.5 OFFERS FORTRAN AND PMA USERS TWO INDEPENDENT
IMPROVEMENTS. FIRST, MANY USER APPLICATIONS MAY BE ABLE TO OPERATE
SUBSTANTIALLY. FASTER. TABLES 1.1 AND 1.2 SHOW SOME SAMPLE DATA. THE
TEST PROGRAM PROCESSED A SINGLE MIDAS FILE CONTAINING 500 RECORDS.
EACH RECORD WAS THE CONCATENATION OF FOUR ASCII TEN CHARACTER KEYS.
FOR EACH RECORD* THE PROGRAM:

1) READ NEXT RECORD (OR FIRST) VIA PRIMARY KEY,
2) FOR EACH SECONDARY INDEX:

2A) READ THE RECORD VIA THE SECONDARY KEY,
2B) DELETED THE CURRENT KEY VALUE,
2C) RE-INSERTED THE KEY VALUE.

THE PERFORMANCE DATA WERE OBTAINED ON A P-650 WITH 1024K BYTES OF
MEMORY. MIDAS PROCESSES EXECUTED WITH THE FAM AND SPOOL PROCESSES AND
A TERMINAL PROCESS. DATA IN TABLE 1.1 WERE OBTAINED FROM PROCESSES
OPERATING CONCURRENTLY ON THE SAME MIDAS FILE. TABLE 1.2 SHOWS
RESPONSE TIMES FOR CONCURRENT PROCESSES EXECUTING THE SAME TEST PROGRAM
BUT OPERATING ON DIFFERENT COPIES OF THE SAME DATA.

MIDAS RELEASE
NUMBER OF CONCURRENT
PROCESSES REV 16.4 REV 16.5

1 0.7 0.4
2 2.2 0.8
3 3.7 1.2
4 5.1 1.6
5 6.9 2.0
_6 --- 2.5
7 3.0

TABLE 1.1 -- AVERAGE RESPONSE TIME PER RECORD PROCESSED (SECONDS)
PROCESSES OPERATING ON THE SAME MIDAS FILE

MIDAS RELEASE
NUMBER OF
CONCURRENT

1
2
3
4
c

$
7
8
3

10
11

TABLE 1 . 2 -

PHANTOMS
REV16.4

0 . 7
1 .8
3 . 2
4 . 8
5 . 7
7 . 5
9.0
9 . 3

1 2 . 5
1 5 . 5
2 1 . 0

REV16.5
TEST UNMODIFIED TEST MODIFIED

0 . 4
2 . 0
3 . 6
5 . 3
7 . 7
9 . 5

1 3 . 8
1 9 . 6

• - AVERAGE RESPONSE TIME PER RECORD PROCESSED
PROCESSES OPERATING ON DIFFERENT F I L E S .

1.0
1 .9
2 . 9
3 . 9
5 . 8
8 . 0

1 0 . 3
1 1 . 8
1 3 . 4
1 4 . 8

(SECONDS)

DATA FOR COLUMN TWO OF TABLE 1 . 1 AND COLUMN THREE OF TABLE 1 .2 WAS
OETAINED BY MODIFYING THE TEST PROGRAM TO CALL THE NEW MIDAS USER
INTERFACE ROUTINES. OPENMS AND CLOSM$ RATHER THAN SRCH$$.

TO OBTAIN THIS PERFORMANCE INCREASE* MIDAS NOW USES A DIFFERENT METHOD
OF HANDLING CONCURRENT PROCESSES. THIS NEW METHOD* HOWEVER* WILL
REQUIRE CHANGES I N FORTRAN AND PMA AND APPLICATION PROGRAMS I N ORDER
FOR THE PROGRAMS TO OBTAIN THE PERFORMANCE INCREASE. COBOL PROGRAMS*
HOWEVER* REQUIRE NO CHANGES. USER OPTIONS ARE DETAILED I N SECTION
2 . 3 . 1 . NOTE THAT UNMODIFIED PROGRAMS WILL S T I L L OPERATE AND THAT
PROGRAMS NEED NOT ALL BE MODIFIED AT THE SAME T I M E . HOWEVER* ALL
FORTRAN AND PMA PROGRAMS WHICH USE THE UNSHARED MIDAS L IBRARIES (KIDALB
AND NVKDALB) MUST BE RELOADED WHETHER OR NOT THE PROGRAMS ARE MODIF IED.
COBOL PROGRAMS WHICH USE THE UNSHARED COBOL AND/OR MIDAS L IBRARIES MUST
ALSO BE RELOADED.

THE
AND

SECOND IMPROVEMENT IN MIDAS IS COMPLETELY INDEPENDENT OF THE FIRST
REQUIRES NO CHANGES IN APPLICATION PROGRAMS. MIDAS WILL NOW DETECT

AND CORRECT CONCURRENCY
POSITION OF A PROCESS IN A
CONCURRENT PROCESS. THE

ERRORS. THESE ERRORS MAY OCCUR WHEN THE
MIDAS F I L E IS MODIFIED BY THE ACTION OF A

ONLY CASE THAT APPLICATION PROGRAMS MUST BE
ABLE TO HANDLE OCCURS WHEN A PROCESS ATTEMPTS TO OPERATE ON ITS
•CURRENT RECORD* (EG. UPDATE IT) AND A CONCURRENT PROCESS HAS DELETED
THE RECORD. IN THIS SPECIAL CASE MIDAS WILL DETECT THE 'ERROR*
RETURN

AND

RECOVERY
STATUS CODE
THAN STATUS

OF 1 3 * WHICH NOW HAS
CODE 13 AT REV 1 6 . 4 .

A DIFFERENT MEANING FOR ERROR

2 HANDLING OF CONCURRENT MIDAS PROCESSES

2.1 OVERVIEW

IN ORDER TO PROVIDE INCREASED PERFORMANCE* MIDAS NOW EMPLOYS A
METHOD OF HANDLING CONCURRENT PROCESSES WHICH DIFFERS FROM PREVIOUS
RELEASES. IN THE PAST MIDAS COORDINATED CONCURRENT PROCESSES BY
GATING PROCESSES AT THE SEGMENT SUBFILE LEVEL (EG. A MIDAS FILE
INDEX). THIS METHOD RELIED UPON FILE SYSTEM READ/WRITE LOCKS AND
REQUIRED THAT SEGMENT SUBFILES BE OPENED' AT THE START OF EACH MIDAS
FILE OPERATION AND CLOSED UPON COMPLETION OF THE OPERATION. FOR
EXAMPLE* TO RETRIEVE A RECORD* MIDAS OPENED THE INDEX SEGMENT
'SUBFILE(S) AND THE DATA SEGMENT SUBFILE. WHEN THE RETRIEVAL
COMPLETED* MIDAS CLOSED THESE SEGMENT SUBFILES.

THE NEW CONCURRENT PROCESS HANDLING METHOD PROVIDES IMPROVED
PERFORMANCE BY GREATLY REDUCING THE NUMBER OF FILE SYSTEM CALLS.
THROUGH USE OF A SEMAPHORE AND A "LOCK" IN SHARED MEMORY* MIDAS
SIMPLY ALLOWS ONLY ONE PROCESS AT A TIME TO EXECUTE A MIDAS FILE
OPERATION. THEREFORE, MIDAS SEGMENT SUBFILES NEED NOT BE CLOSED AT
THE END OF EACH OPERATION ONLY TO BE REOPENED AT THE START OF THE
NEXT CALL. DETAILS OF THE NEW METHOD ARE DESCRIBED IN SECTION 2.2.

THE NEW METHOD OF HANDLING CONCURRENT PROCESSES REQUIRES THAT MIDAS
BE NOTIFIED BOTH WHEN A PROCESS IS TO BEGIN USING A MIDAS FILE AND
WHEN THE PROCESS HAS COMPLETED OPERATIONS ON THE FILE. FOR FORTRAN
AND PMA USERS OF THE MIDAS CALL LEVEL INTERFACE* THIS REQUIREMENT
MEAKS THAT APPLICATION PROGRAMS MUST BE MODIFIED. SECTION 2.3
DESCRIBES METHODS OF MAKING THESE CHANGES. IMPORTANT INSTALLATION
INSTRUCTIONS ARE DETAILED IN SECTION 4. IT SHOULD BE NOTED THAT
PRIMENET USERS AND USERS WHO DO NOT WISH TO MAKE APPLICATION PROGRAM
CHANGES MAY DISABLE THE NEW METHOD OF HANDLING CONCURRENT PROCESSES
AND THUS RETURN TO THE METHOD EMPLOYED BY PREVIOUS MIDAS RELEASES.
"THE PROCEDURE FOR DISABLING THE NEW METHOD IS DESCRIBED IN SECTION
4.3.

2.2 IMPLEMENTATION METHOD

TO MAINTAIN FILE INTEGRITY, MIDAS MUST SYCHRONIZE CONCURRENT
PROCESSES. IN PREVIOUS RELEASES OF MIDAS*
ACCOMPLISHED BY OPENING FILE SEGMENTS
SINCE FILE READ/WRITE LOCKS WERE SET TO

THIS
FOR
2

SYNCHRONIZATION WAS
READING AND WRITING.
(N READERS AND ONE

WRITER), ONLY ONE PROCESS COULD ACCESS A FILE SEGMENT AT A TIME. A
SECOND PROCESS WAS ONLY ABLE TO PROCEED WHEN THE FIRST PROCESS
FINISHED ITS MIDAS OPERATION AND THE FILE SEGMENTS WERE CLOSED.
THIS METHOD OF SYNCHRONIZATION REQUIRED MANY CALLS TO THE FILE
SYSTEM ROUTINE SRCH$$ TO OPEN AND CLOSE FILE SEGMENTS AND THUS
IMPOSED A SIGNIFICANT PERFORMANCE PENALTY.

IN THIS RELEASE MIDAS DOES NOT CLOSE FILE SEGMENTS BETWEEN MIDAS
OPERATIONS. THIS* HOWEVER* REQUIRES THAT HIDAS FILE READ/WRITE
LOCKS BE SET TO 3 (N READERS AND M WRITERS). OTHERWISE* CONCURRENT
PROCESSES WOULD BE UNABLE TO OPEN A FILE SEGMENT WHICH HAD BEEN

ALREADY OPENED BY ANOTHER PROCESS. NOTE THAT IN ALL PAST AND
PRESENT RELEASES, MIDAS MAY WRITE INTO A FILE ON BEHALF OF A
USER-LEVEL READ REQUEST.

WITH FILE READ/WRITE LOCKS SET TO 3~, FILE INTEGRITY COULD BE
DESTROYED. THIS WOULD HAPPEN. FOR INSTANCE* IF TWO PROCESSES BOTH
READ THE SAME RECORD AND THEN BOTH UPDATE THE RECORD. IN THIS CASE
THE FIRST UPDATE WOULD BE LOST. TO PREVENT LOSS OF FILE INTEGRITY.
MIDAS EMPLOYS A METHOD OF HANDLING CONCURRENT PROCESSES WHICH DOES
NOT DEPEND ON OPENING AND CLOSING FILE UNITS.

IN THE NEW METHOD WHEN MIDAS IS CALLED, A CHECK IS DONE TO SEE IF
ANY OTHER PROCESS IS USING MIDAS. TO DO THIS CHECK, MIDAS TESTS A
"LOCK" LOCATED IN A SHARED MEMORY SEGMENT. A ZERO VALUE INDICATES
THAT MIDAS IS AVAILABLE. IF NON-ZERO, THE LOW ORDER 15 BITS IS THE
USER NUMBER OF THE PROCESS CURRENTLY ACCESSING MIDAS. (NOTE! BIT
ONE IS ALWAYS SET WHEN MIDAS IS IN USE.) WHEN THE RESULT OF THE
LOCK TEST IS ZERO, THE LOCK IS SET TO INDICATE THAT THE CURRENT
PROCESS (COING THE CHECK} NOW HAS SOLE ACCESS TO MIDAS. THIS "TEST
AND SET" OPERATION IS N0N-INTERRUPTI8LE. THEREFORE A PROCESS CANNOT
MODIFY THE LOCK VALUE BETWEEN THE TIME THAT ANOTHER PROCESS HAS
TESTED AND SET THE LOCK VALUE. IF THE TEST AND SET OPERATION IS
SUCCESSFUL, THE PROCESS IS SAID TO HAVE "OBTAINED" THE LOCK.

IF WHEN TESTED, THE LOCK IS NON-ZERO, THE TESTING PROCESS MUST WAIT
UNTIL MIDAS BECOMES AVAILABLE. TO ACCOMPLISH THIS, THE PROCESS IS
SUSPENDED AND PUT ON A SEMAPHORE WAIT LIST. THE WAIT LIST FORMS A
QUEUE OF PROCESSES WAITING TO BEGIN A MIDAS OPERATION. EACH TIME AN
OPERATION COMPLETES, THE LOCK IS RELEASED, IE. THE LOCK VALUE IS
SET TO ZERO. A PROCESS IS THEN REMOVED FROM THE WAIT LIST. THE
RESTARTED PROCESS AGAIN MUST ATTEMPT TO OBTAIN THE LOCK.

2.3 APPLICATION IMPLICATIONS

2.3.1 USER OPTIONS

A USER HAS TWO BASIC OPTIONS WITH THE NEW MIDAS RELEASE.

1) THE USER MAY DISABLE THE NEW METHOD OF CONCURRENT
PROCESS HANDLING AND MAKE NO APPLICATION PROGRAM
CHANGES. ALTHOUGH THERE WOULD BE NO PERFORMANCE
GAIN, THE DETECTION AND CORRECTION OF CONCURRENCY
ERRORS WOULD STILL OCCUR. NOTE THAT THIS IS THE
ONLY OPTION AVAILABLE TO PRIMENET USERS.

2) THE USER MAY MODIFY SOME OR ALL APPLICATION PROGRAMS
IN ORDER TO SELECTIVELY OBTAIN A PERFORMANCE
IMPROVEMENT. UNMODIFIED PROGRAMS AUTOMATICALLY
USE THE NEW METHOD OF HANDLING CONCURRENT
PROCESSES BUT MAY SUFFER SOME PERFORMANCE
DEGRADATION.

2.3.2 APPLICATION PROGRAM MODIFICATIONS

WHEN MIDAS IS INSTALLED, USERS MUST RELOAD ALL APPLICATION
PROGRAMS WHICH USE AN UNSHARED MIDAS LIBRARY. IN ADDITION, TO
OBTAIN THE POTENTIAL PREFORMANCE INCREASE* USERS MUST MODIFY
FORTRAN AND PMA MIDAS APPLICATION PROGRAMS. THE MODIFICATIONS
INVOLVE INSERTING SUBROUTINE CALLS TO NOTIFY MIDAS THAT FILE
SEGMENTS ARE NOT TO BE CLOSED BETWEEN CALLS TO MIDAS. NOTE THAT
NOT ALL APPLICATIONS NEED BE MODIFIED AT THE SAME TIME.

USERS MAY CHOOSE FROM TWO METHODS OF PROGRAM MODIFICATION. THE
FIRST METHOD INVOLVES INSERTING CALLS TO SUBROUTINE NTFYMS. THE
FIRST CALL SHOULD BE INSERTED FOLLOWING THE CALL TO OPEN THE
MIDAS FILE BUT BEFORE THE FIRST MIDAS FILE OPERATION. THE OTHER
CALL TC NTFYMS SHOULD BE INSERTED JUST BEFORE THE CALL TO CLOSE
THE MIDAS FILE. NTFYMS NOTIFIES MIDAS THAT A MIDAS FILE HAS JUST
BEEN OPENED OR IS ABOUT TO BE CLOSED. FOR FURTHER DETAILS REFER
TO THE SECTION WHICH DESCRIBES SUBROUTINE NTFYMS.

THE SECOND METHOD IS TO REPLACE THE CALLS WHICH OPEN AND CLOSE A
MIDAS FILE WITH CALLS TO OPENMS AND CLOSMS RESPECTIVELY.
SUBROUTINE OPENMS OPENS A MIDAS FILE AND THEN CALLS NTFYMS.
CLOSMS CALLS SUBROUTINE NTFYMS AND THEN CLOSES A MIDAS FILE.
DETAILS ARE PROVIDED IN THE SECTIONS WHICH DESCRIBE OPENMS AND
CLOSMS.

MIDAS SUPPORTS R MODE APPLICATIONS. HOWEVER, BECAUSE THE R MODE
MIDAS LIBRARY ENTERS V MODE TO DO A PORTION OF THE CONCURRENT
PROCESS HANDLING, MIDAS WILL NOT WORK ON A PRIME P-300.

2.3.2.1 NTFYMS

* *
^1^~FYM$~ *"
* *

FUNCTION

NOTIFY MIDAS THAT A MIDAS FILE (SEGMENT DIRECTORY) HAS BEEN
OPENED OR IS ABOUT TO BE CLOSED BY THE USER.

£ALLI;NG_SEGy.£.NC.E

CALL NTFYMS (KEY* UNIT, STATUS)

KEY — (INPUT) SPECIFIES WHETHER THE FILE HAS BEEN OPENED
OR IS ABOUT TO BE CLOSED.
1 - FILE HAS BEEN OPENED
2 - FILE IS ABOUT TO BE CLOSED

UNIT -- (INPUT) FILE UNIT ON WHICH THE FILE IS OPEN

STATUS -- (OUTPUT) ERROR STATUS
0 - NO ERROR
10001 - BAD PARAMETER
10002 - TOO MANY MIDAS FILES OPEN SIMULTANEOUSLY

MAY OCCUR ONLY IF KEY IS 1. MAXIMUM
NUMBER OF FILES IS 129. SEE PARAMETER
MFILES IN FILE KPARA'M.

DISCUSSION

A CALL TO NTFYMS AFTER A MIDAS FILE HAS BEEN OPENED
NOTIFIES MIDAS THAT IT SHOULD LEAVE OPEN BETWEEN MIDAS
CALLS ANY OF THE SPECIFIED FILE'S SEGMENT SUBFILES
WHICH IT OPENS DURING SUBSEQUENT FILE ACCESS.

A CALL TO NTFYMS BEFORE A MIDAS FILE IS CLOSED
NOTIFIES MIDAS THAT IT SHOULD CLOSE ANY OF THE FILE'S
SEGMENT SUBFILES THAT IT HAS LEFT OPEN.

IF THE MIDAS LIBRARY HAS BEEN CUSTOMIZED TO DISABLE
INTERNAL LOCKINGt A CALL TO NTFYMS HAS NO EFFECT.

4. NTFYMS IS MOST USEFUL IN THOSE APPLICATIONS WHICH
OPEN AND CLOSE ALL TYPES OF FILES VIA THE SAME
CALLS TO THE FILE SYSTEM. IN THESE APPLICATIONS
IT IS PROBABLY SIMPLEST TO INSERT CALLS TO NTFYMS
RATHER THAN GENERATE A SEPARATE FILE SYSTEM CALL
FOR EACH TYPE OF FILE. (.EG, SAM, DAM, MIDAS, ETC.)

NOTE THAT MIDAS- DOES NOT VERIFY. THAT THE FILE
REFERENCED IN THE CALL TO NTFYMS IS A I
A FILE SYSTEM ERROR CODE MAY RESULT IF
FILE IS NOT A MIDAS FILE.

I ID.AS FILE,
THE REFERENCED

2.3.2.2 OPENMS

* *

* *

£UN£IION

OPENS A MIDAS FILE (SEGMENT DIRECTORY) AND* UNLESS THE MIDAS
LIBRARY HAS BEEN CUSTOMIZED TO DISABLE INTERNAL LOCKING*
CAUSES MIDAS TO LEAVE OPEN BETWEEN MIDAS CALLS ANY OF THE
FILE»S SEGMENT SUBFILES WHICH IT OPENS DURING SUBSEQUENT FILE
ACCESS. OPENMS VERIFIES THAT THE SPECIFIED FILE EXISTS AND
THAT IT IS OF THE APPROPRIATE TYPE* IE. SAM SEGMENT
DIRECTORY.

milM^.S£ fllOfifc.

CALL OPENMS (KEY, TRENAM, NAMLEN, UNIT, STATUS)

KEY -- (INPUT) VALID SRCH$$ ACTTON SUB-KEY (KSREAD, KSWRIT,
OR KSRDWR, OPTIONALLY TOGETHER WITH KSGETU)

TRENAM -- (INPUT) TREE NAME OF FILE TO BE OPENED

NAMLEN -- (INPUT) LENGTH OF TREE NAME IN CHARACTERS

UNIT — (INPUT) IF KSGETU IS NOT SPECIFIED, THEN UNIT
IS THE FILE UNIT ON WHICH THE FILE IS TO BE OPENED.
(OUTPUT) IF KSGETU IS SPECIFIED, UNIT IS THE
FILE UNIT ON WHICH THE FILE WAS OPENED.

STATUS -- (OUTPUT) ERROR STATUS
0 - NO ERROR
< 10001 - FMS ERROR (SYSTEM DEFINED)
= 10001 - BAD KEY
= 10002 - TOO MANY MIDAS FILES OPEN

THE LIMIT IS 129. SEE PARAMETER
MFILES IN FILE KPARAM.
SIMULTANEOUSLY

= 10003 - SPECIFIED FILE IS NOT A MIDAS SEGMENT
DIRECTORY

2.-3,2.3 CLOSMS

* *
* CLOSMS *
* *

FUNCTION

CLOSES A MIDAS FILE (SEGMENT DIRECTORY) OPEN ON A SPECIFIED
FILE UNIT AND? UNLESS THE MIDAS LIBRARY HAS BEEN CUSTOMIZED TO
DISABLE INTERNAL LOCKING? CLOSES ANY OF THE FILE'S SEGMENT
SUBFILES WHICH MIDAS HAS OPENED DURING THE COURSE OF FILE
ACCESS.

CALLING^SEQUENCE

CALL CLOSMS (UNIT* CODE)

UNIT -- (INPUT) FILE UNIT ON WHICH THE MIDAS FILE IS OPEN

CODE -- (OUTPUT) ERROR STATUS ' • . '" ; 1 "
= 0 - NO ERROR
> 0 - FMS ERROR (SYSTEM DEFINED)

2.3.3 EXAMPLES

2.3.3.1 USE OF NTFYM$

IN THIS FORTRAN EXAMPLE THE PROGRAM OPENS FILE FNAME ON UNIT
UNIT. VARIABLE TYPE HAS PREVIOUSLY BEEN SET TO A VALUE WHICH
DESCRIBES THE TYPE OF FILE OPENED. IF THE FILE IS OF TYPE
"MICAS"* THE PROGRAM CALLS NTFYM$ TO NOTIFY MIDAS THAT IT IS
REACY TO BEGIN OPERATIONS ON THE FILE. AFTER PROCESSING HAS
BEEN COMPLETED, THE PROGRAM NOTIFIES MIDAS OF THE FACT AND
THEN CLOSES THE FILE. NOTE THAT NTFYMS IS USED HERE BECAUSE
SEVERAL TYPES OF FILES MAY BE OPENED BY THE CALL TO SRCH$$.
NTFYMS SHOULD ONLY BE CALLED FOR MIDAS FILES.

C OPEN THE FILE
CALL SRCH$$(K$READ,FNAME,6,UNIT,FTYPE, CODE)
IF (CODE .NE. 0) GO TO 9000
IF (TYPE .NE. MIDAS) GO TO 200/* CHECK FILE TYPE
CALL NTFYM$(1,UNIT,CODE) /* TELL MIDAS WE'RE READY
IF (CODE .NE. 0) GO TO 9002

200 CONTINUE

DO MIDAS FILE PROCESSING (EG. CALLS TO FINDS)

IF (TYPE .NE* MIDAS) GO TO 800
CALL NTFYMS(2,UNIT,CODE) /* TELL MIDAS PROCESSING IS D

O^E
800 CONTINUE

CALL SRCH$$(K$CLOS,0,0,UNIT,TYPE,CODE) /* CLOSE FILE

2< j«o«i

THIS 1
AT THE

2 USE OF OPENMS AND CLOSMS

3ROGRAM USES OPENMS TO OPEN F I L E FNAME ON UNIT UNIT AND
SAME TIME NOTIFY MIDAS THAT PROCESSING IS ABOUT TO

B E G I N . AFTER PROCESSING HAS BEEN COMPLETED? THE PROGRAM CALLS
CLOSMS TO NOTIFY MIDAS THAT PROCESSING HAS BEEN COMPLETED AND t
TO CLOSE THE F I L E * THE USE OF OPENMS AND CLOSMS IS CONVENIENT L
WHEN ONE KNOWS THAT ONLY MIDAS TYPE F I L E S ARE BEING OPENED OR
CLOSED.

C
C

OPEN THE F I L E AND NOTIFY MIDAS THAT WE'RE READY
TO USE THE F I L E -
CALL OPENMS(K$READ 9FNAME*6»UNIT9CODE)
IF (CODE ,NE. 0) GO TO 9000
a

•

C
o

DO MIDAS F I L E PROCESSING (EG» CALLS TO F INDS)
o

•

CALL CLOSM$(UNIT»CODE) / * TELL MIDAS WE'RE DONE
C AND CLOSE THE F I L E

o

e

0

2.3.4 ADMINISTRATION CHANGES

2.3.4.1 OVERVIEW

USERS MUST PERFORM TWO TYPES OF MIDAS INITIALIZATION
PROCEDURES. WHEN DOING A COLD START* THE SEGMENT CONTAINING
THE LOCK MUST BE SHARED* THE LOCK VALUE MUST BE SET TO ZERO
AND THE SEMAPHORE DRAINED. INITIALIZATION OF THE SEMAPHORE
AND SHARED LOCK IS HANDLED BY MIDAS UTILITY IMIDAS. FOR
DETAILS REFER TO SECTION 2.3.4.2.

THE SECOND TYPE OF INITIALIZATION IS NECESSARY IF AN
APPLICATION PROGRAM ABNORMALLY TERMINATES AND AS A CONSEQUENCE
FAILS TO RELEASE THE SHARED LOCK. IF THE LOCK IS NOT
RELEASED * ALL MIDAS PROCESSES WILL BE BLOCKED. TO RELEASE THE
LOCK, MCLUP SHOULD BE EXECUTED. NOTE THAT A BLOCKED CONDITION
MIGHT NOT BE IMMEDIATELY RECOGNIZED BY USERS. IF THIS
CONDITION IS SUSPECTED* MCLUP MAY BE EXECUTED SIMPLY TO
"DETERMINE WHICH PROCESS HOLDS THE LOCK. MCLUP IS DESCRIBED IN
MORE DETAIL IN SECTION 2.3.4.3.

2 . 3 . 4 . 2 MIDAS IN IT IAL IZATION — IMIDAS

* * * * * * * * * *
* k

* IMIDAS *
* *
* * * * * * * * * *

FU^CIlOlil

INITIALIZES THE MIDAS SEMAPHORE AND SHARED LOCK.

DISCUSSION

IMIDAS MUST BE RUN AS PART OF THE COLD START SEQUENCE.
IF MIDAS APPLICATION PROGRAMS ARE RUNNING WHEN IMIDAS
IS INVOKED, MIDAS FILES IN USE AT THE TIME MIGHT BE
DAMAGED. COMMAND FILE C_MINIT MAY BE INSTALLED IN THE
COLD START PROCEDURE TO SHARE THE SEGMENT CONTAINING THE
LOCK AND TO EXECUTE IMIDAS,

2. SUBROUTINE NAMED "MAIN"
SEGMENT 4000.

IMIDAS HAS BEEN CODED AS A
SO THAT IS CAN BE LOADED INTO SPLIT
IMIDAS MAY THEN 3E EXECUTED USING THE RESUME
COMMAND.

3. COMMAND FILE C__IMIDAS IN UFD MIDAS>SOURCE MAY BE USED
TO BUILD IMIDAS IN UFD MIDAS>CMDNCO .

4. IMIDAS MUST BE COMPILED WITH THE »-64\/» AND "-BIG"
FTN OPTIONS. DURING THE LOAD? THE COMMON BLOCK WITH
THE NAME "LIST" MUST BE PLACED AT THE ADDRESS <0/l>
WITH THE SEG COMMAND:

SY LIST 0 1

2.3.4.3 MIDAS CLEANUP UTILITY — MCLUP

* *
* MCLUP *
* *

FUNCTION

TERMINATION OF A MIDAS PROGRAM, MCLUP
THE SHARED LOCK AND NOTIFIES THE SEMAPHORE TO

AFTER ABNORMAL
RE-INITIALIZES
AWAKEN ANY"MIDAS PROCESS WAITING ON THE LOCK

DISCUSSION

1. MCLUP IS NEEDED ONLY WHEN THE
OCCURS WITHIN THE MIDAS CODE.

ABNORMAL TERMINATION
THIS SITUATION CAN

ARISE IF THE USER TYPES 'BREAK* OR
IF AN INTERNAL MIDAS BUG CAUSES AN
ACCESS VIOLATION.

•CONTROL-P*, OR
ERROR SUCH AS AN

2. IF INVOKED WITH NO
IF THE SHARED LOCK

OPTIONS, MCLUP
IS HELD BY THE

RE-INITIALIZES
TERMINAL USER,

ONLY

OTHERWISE MCLUP PRINTS THE USER
USER THAT HOLD THE LOCK. IF NO
LOCK, THEN MCLUP DOES NOTHING.

NUMBER OF THE
PROCESS HOLDS THE

3. IF INVOKED WITH AN OPTION OF THE FORM

-USER USERNUMBER

THEN MCLUP
"BY-

WILL RE-INITIALIZE IF THE SHARED LOCK IS
HELD BY THE SPECIFIED USER, OTHERWISE MCLUP PRINTS
USER NUMBER OF THE USER THAT HOLDS THE LOCK.
IF THE_USER_NUMBE R OF AN ACTIVE MIDAS PROCESS
I S ~S P EC IF I ED , DAMAGE MAY OCCUR
FILES IN USE BY THE PROCESS.

THE

TO MIDAS

MCLUP MAY BE
FILE C MCLUP

BUILT IN UFD CMDNCO BY COMMAND
IN UFD MIDAS.

5. MCLUP MUST BE COMPILED WITH THE "-64V" AND "-BIG" FTN
OPTIONS. DURING ThE LOAD, THE COMMON BLOCK WITH THE
NAME "LIST" MUST BE PLACED AT THE ADDRESS <0/l> WITH
THE SEĜ COMMAND

SY LIST 0 1

3 RECOVERY FROM CONCURRENCY ERRORS

3.1 OVERVIEW

MIDAS NOW DETECTS AND CORRECTS MOST CONCURRENCY ERRORS. THESE
ERRORS, ASSOCIATED WITH OPERATIONS INVOLVING THE CURRENT RECORD,
OCCUR WHEN THE CURRENT INDEX ENTRY HAS BEEN DELETED OR PHYSICALLY
MOVED SINCE THE TIME THE ENTRY BECAME CURRENT. IF MIDAS DISCOVERS
THAT THE ENTRY HAS BEEN DELETED, THEN AN ERROR CODE OF 13 IS
RETURNED. IN THE EVENT THAT THE ENTRY HAS BEEN MOVED, MIDAS
AUTOMATICALLY LOCATES THE ENTRY AND CONTINUES NORMALLY.

3.2 IMPLEMENTATION OF CONCURRENCY ERROR DETECTION AND RECOVERY

AT THE FORTRAN CALL LEVEL INTERFACE, THE CONCEPT OF CURRENT RECORD
AND CURRENT ENTRY IS IMPLEMENTED AS A FOURTEEN WORD COMMUNICATION
ARRAY. THE COMMUNICATION ARRAY IS AN ARGUMENT IN MOST SUBROUTINE
CALLS TO MIDAS. THE NEXT SECTION OUTLINES THE NEW COMMUNICATION
ARRAY FORMAT.

3.2.1 COMMUNICATION ARRAY FORMAT

WORD 1 (INPUT) IF -1 THEN MIDAS ARRAY CONTENTS ARE NOT USED.
(OUTPUT) ERROR STATUS

WORDS 2-4 CURRENT INDEX ENTRY ADDRESS
WORD 2 BITS 1-8 — ENTRY NUMBER
WORD 2 BITS 9-16 -- SEGMENT FILE NUMBER
WORDS 3 & 4 (32 BITS) -- WORD OFFSET OF INDEX BLOCK

WORD 5 HASH VALUE (BASED ON CURRENT KEY VALUE)

WORDS 6-9 CURRENT KEY VALUE (OR 1ST 4 WORDS OF KEY)

WORDS 10-12 CURRENT RECORD ADDRESS
WORD 10 BIT 1 -- RECORD LOCKED FLAG
WORD 10 BITS 9-16 — SEGMENT FILE NUMBER
WORDS 11 & 12 — WORD OFFSET OF RECORD

WORD 13 DATA CONTROL WORD
BITS 1-8 — FLAG BITS
SITS 9-16 — PRIMARY KEY SIZE (BITS)

WORD 14 DATA RECORD LENGTH (WORDS)

NOTE THAT WORDS 2 THROUGH 9 OF THE COMMUNICATION ARRAY SPECIFY A
CURRENT INDEX ENTRY AND WORDS 10 THROUGH 12 SPECIFY A CURRENT
RECORD.

DURING OPERATIONS INVOLVING THE CURRENT ENTRY (EG. GET NEXT RECORD)
WORDS 2 THROUGH 4 ARE USED TO LOCATE THE EXPECTED POSITION OF THE

ENTRY. TO VERIFY THAT THE POSITION CONTAINS THE CORRECT ENTRY,
MIDAS COMPARES THE DATA POINTER IN THE ENTRY WITH THE DATA POINTER
IN WORDS 10 THROUGH 12 OF THE COMMUNICATION ARRAY. IF THE POINTERS
DON'T MATCH, THE THE ENTRY IS THE WRONG ONE.

EVEN IF THE POINTERS DO MATCH, MIDAS COMPARES THE KEY VALUE IN THE
INDEX ENTRY TO THE KEY VALUE IN THE COMMUNICATION ARRAY. IF THEY
DON'T MATCH, THEN THE ENTRY IS THE WRONG ONE. WHEN A WRONG ENTRY IS
DETECTED, MIDAS SEARCHES FOR THE CORRECT ENTRY. IF NOT FOUND, MIDAS
RETURNS AN ERROR CODE OF 13. NOTE THAT REV IS VERSIONS EARLIER THAN
REV 16.5 RETURNED AN ERROR CODE OF 13 WHEN A CONCURRENCY ERROR WAS
gETECJED. USERS OF THESE EARLIER RELEASES MAY HAVE MODIFIED THEIR
APPLICATIONS TO ATTEMPT TO RECOVER FROM AN ERROR 13. AN ERROR 13
INDICATES THAT THE CURRENT INDEX ENTRY HAS BEEN DELETED, EXISTING
APPLICATION ATTEMPTS TO HANDLE AN ERROR 13 MAY NEED MODIFICATION.

173 LIMITATIONS

FOR INDEXES WITH KEYS WHICH ARE LONGER THAN 8 BYTES, MIDAS MAY FAIL
TO DETECT A CONCURRENCY ERROR. TO UNDERSTAND HOW THIS MAY OCCUR,
NOTICE THAT IN THE COMMUNICATION ARRAY, AT MOST EIGHT BYTES OF A KEY
MAY BE STORED. FOR KEYS LONGER THAN EIGHT BYTES, MIDAS STORES A
"HASH VALUE IN WORD 5 OF THE ARRAY. THE HASH VALUE IS BASED ON THE
PORTION OF THE KEY BEYOND THE EIGHTH BYTE. NOW MIDAS WILL FAIL TO
DETECT A CONCURRENCY ERROR IF;

A) THE DATA POINTERS MATCH (IE. THE 2 INDEX ENTRIES POINT
TO THE SAME DATA RECORD),

"BT THE KEY IS' LONGER THAN 8 BYTES,
C) THE FIRST 8 BYTES OF THE KEY MATCH THE 8 BYTES

STORED IN THE COMMUNICATION ARRAY, AND
D) THE HASH CODE, BASED ON THE REMAINING BYTES, IS

THE SAME AS THE HASH CODE IN THE ARRAY.

OR IF:

A) THE DATA POINTERS MATCH,
B) THE KEYS ARE LESS THAN OR EQUAL TO 8 BYTES, AND
C) THE KEYS MATCH.

4 INSTALLATION OF MIDAS

4.1 COMMAND FILES

SEVERAL NEW COMMAND FILES HAVE BEEN ADDED.

C_MIDAS -- BUILDS MIDAS LIBRARIES AND UTILITIES.

C VKDALB -- BUILDS THE SHARED V MODE LIBRARY* VKDALB
VKDALB IS PUT IN LIB. K4000* K2014A,
AND K2014B ARE PLACED IN UFD SYSTEM.

C_NVKDALB -- BUILDS THE UNSHARED V MODE" LIBRARY NVKDALB

IN UFD LIB.

C_KIDALB — BUILDS THE R MODE LIBRARY IN UFD LIB.

C IMIDAS -- BUILDS UTILTY IMIDAS IN UFD SYSTEM.
C MCLUP -- BUILDS UTILTY MCLUP IN UFD CMDNCO

C_CREATK -- BUILDS CREATK IN CMDNCO.

C KBUILD — BUILDS KBUILD IN CMDNCO.

C KIDDEL — BUILDS KIDDEL IN CMDNCO

4.2 MODIFYING THE SHARED LOCK AND SEMAPHORE VALUES

AS SUPPLIED* MIDAS USES SEMAPHORE NUMBER 64 AND WORD U77777 OF
SEGMENT 2020 AS THE SHARED LOCK. THESE VALUESt DEFINED IN FILE
KPARAM, MAY BE MODIFED BY USERS.

THE PARAMETERS ARE:

MSEMA1 — SEMAPHORE NUMBER
SLSEG -- SEGMENT NUMBER OF THE SHARED LOCK
SLWORD -- WORD NUMBER OF THE SHARED LOCK

IF ANY OF THESE VALUES IS MODIFIED, THE USER MUST FOLLOW THE
PROCEDURE DESCRIBED IN PARTS 2 AND 3 OF SECTION 4.3. MIDAS
UTILITIES MCLUP AND IMIDAS MUST BE REBUILT AND INSTALLED. IN
ADDITION* COMMAND FILE C_MIMIT AND THE COLD START PROCEDURE MUST
BE MOCIFIEC SO THAT THE CORRECT SEGMENT GETS SHARED.

4.3 DISABLING THE NEW CONCURRENT PROCESS HANDLING METHOD

USERS MAY DISABLE THE CONCURRENCY C0NTR 0L METHOD AND THEREBY
RETURN TO THE METHOD USED IN PREVIOUS RELEASES^ NOTE THXT
PROGRAMS WHICH USE NTFYMS, OPENMS, AND CLOSM$ WILL STILL WORK
CORRECTLY.

PROCEDURE:

1) IN FILE KPARAM, CHANGE THE VALUE OF PARAMETER SHDSEG FROM
.TRUE. TO .FALSE.,

2~> FOR THE-UNSHARED MTDAS LIBRARIES? KIDALB AND NVKDALB,

A) COMPLILE SLIBROUIUiE LDPOOL. FOR V MODE LIBRARY
NVKDALB USE FILE LONGPL. FOR THE R MODE LIBRARY
KIDALB USE FI.L£ LDPOOL.

B) USE THE BINARY EDITOR, EDB, TO REPLACE THE OLD VERSION
OF ROUTINE LDPOOL WITH THE NEW VERSION.

C) RELOAD APPLICATION PROGRAMS WHICH USE THE UNSHARED
LIBRARIES.

T> FOR THE SHARED V MODE LIBRARY VKDALBt REBUILD AND RE-INSTALL
THE LIBRARY. APPLICATION PROGRAMS WHICH USE THE SHARED
LIBRARY DO NOT NEED TO BE RE-LOADED.

4.4 NETWORK USERS

FOR NETWORK APPLICATIONS IN WHICH PROCESSES ACCESS REMOTE MIDAS
FILES, THE CONCURRENT PROCESS HANDLING METHOD MUST BE DISABLED BY
THE USER TO PREVENT LOSS OF FILE INTEGRITY.

4.5 MIDAS FILE READ/WRITE LOCKS

WHEN MIDAS IS INSTALLED, THE READ/WRITE LOCK FOR EACH MIDAS FILE
WHICH IS TO BE ACCESSED CONCURRENTLY, MUST BE SET BY THE USER TO
3. <N READERS AND M WRITERS)

4.6 RELOADING APPLICATION PROGRAMS

WHEN INSTALLING MIDAS, ALL APPLICATION PROGRAMS WHICH USE AN
UNSHARED MIDAS LIBRARY MUST BE RELOADED.

UUP110-UP112 (KDLC1) RELEASE OF BASIC DIAGNOSTIC FOR THE 5600 (MDLC)
SERIES SYNCHRONOUS CONTROLLERS

UUP113-UP115 (MDLC2) RELEASE OF BISYNC MICROCODE DIAGNOSTIC FOR THE
5600 (MDLC) SERIES OF SYNCHRONOUS CONTROLLERS

UUP116-UP118 (MDLC3) RELEASE OF PACKET MICROCODE DIAGNOSTIC FOR THE
5600 (MDLC) SERIES OF SYNCHRONOUS CONTROLLERS

UUP119-LP121 CMDLC4) RELEASE OF DIAGNOSTIC FOR THE ICL7020-UT200
UNIVAC 1004 MICROCODE FOR THE 5600 (MDLC) SERIES OF
SYNCHRONOUS CONTROLLERS

**
UUP122-UP124 (MDLC5) RELEASE OF DIAGNOSTIC FOR HDLC MICROCODE FOR THE

5600 (MDLC) SERIES OF SYNCHRONOUS CONTROLLERS
* +

UUP125-UP127 (MDLC6) RELEASE OF DIAGNOSTIC FOR BISYNC + ANY
OTHER PROTOCOL ON THE 5600 (MDLC) SERIES OF SYNCHRONOUS

**

UUP128-UP13Q

CONTROLLERS

(MDLC7) RELEASE OF DIAGNOSTIC FOR PACKET + ANY OTHER
PROTOCOL ON THE 5600 (MDLC) SERIES OF SYNCHRONOUS CONTROLLERS

(MDLC8) RELEASE OF DIAGNOSTIC FOR THE HDLC + ANY OTHER UUP131-LP133

* *
UUP134-UP136
**
UUP137-UP138

PROTOCOL ON THE 5600 (MDLC) SERIES OF SYNCHRONOUS CONTROLLERS

(MDLC8) RELEASE

(URCTl) TO ADD TEST FOR NEW ELECTRONIC VERTICAL FORMAT UNIT
OPTION ON 1000 LPM DATA PRINTER LINE PRINTER

* *
UUP139-UP140 (RTCT2) TO FIX PIO TIMING CHARACTERISTICS PERTINENT

TO VCP OPERATION
**
UUP141-UP142
* *

(HSSCT2) FAILED OCCASIONALLY ON PRIME 200'S

UUP143-IP146 (COBOL) SEE MIDAS 16.5. COBOL HAS BEEN CHANGED TO WORK
CORRECTLY WITH MIDAS 16.5.

UUP146A-UP146B (PXTD TO ALLOW THE VCP TO OPERATE WITH THE
DIAGNOSTIC AS THE TEST USED TO USE THE SOC'S DIAGNOSTIC
MODE CAPABILITY WHICH ARE NOT PRESENT ON THE VCP.

UUP146C-UP146D (AMLCT5) TWO SMALL CHANGES WERE MADE. ONE WAS A BUG
FIX AND THE OTHER IS AN ADDED FEATURE.

* *
UUP146E-UP146F (FLT750) NEW TEST PROGRAM FOR P750 FLOATING POINT HARDWARE

UUP146G-UP146H (P500T2) TO ACCOMMODATE THE P750 CPU.

UUP146I-UP146J (CPUT4) TO ACCOMMODATE CHANGES M O £ TO. 7M 750

* *
UUP146K-UP146L (XACHEl) TO ACCOMODATE THE P750 CPU.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

